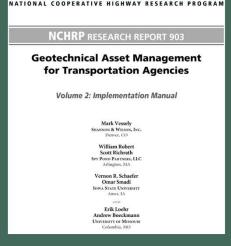


What is Transportation Asset Management?


Transportation Asset Management (TAM)

"Strategic and systematic process of operating, maintaining, upgrading, and expanding physical assets effectively throughout their lifecycle" – AASHTO

 TAM for Bridges and Pavements is required and <u>encouraged</u> for ancillary assets

What it means: No Federal directive or requirement ... may be (likely?) considered optional by management

"My Department has 5,000 geotechnical assets and 70% meet performance criteria. If we do nothing, in 10 years it will be 65% and will result in accumulated direct costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

"My Department had 5,000 geotechnical assets and 70% meet performalise criteria. If we do nothing, in 10 years it will be 65% and will result in accumulated direct costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

GAM Provides:

Inventory

"My Department has 5,000 geotechnical assets and 70% meet performance criteria. If we do nothing, in 10 years it will be 05% and will result in accumulated direct costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

- Inventory
- Perf. Measures

"My Department has 5,000 geotechnical assets and 70% most performance criteria. If we do nothing, in 10 years it will be 65% and will result in accumulated unect costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

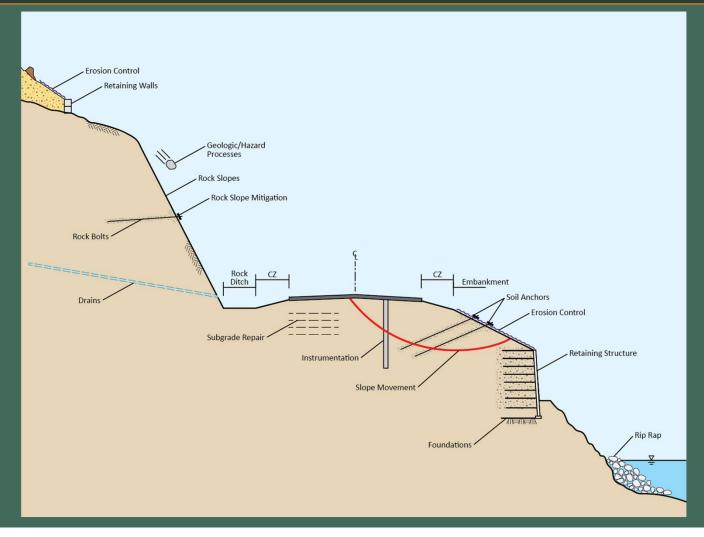
If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

- Inventory
- Perf. Measures
- Deterioration
 Estimates

"My Department has 5,000 geotechnical assets and 70% meet performance criteria. If we do nothing, in 10 years it will be 65% and will result in accumulated direct costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

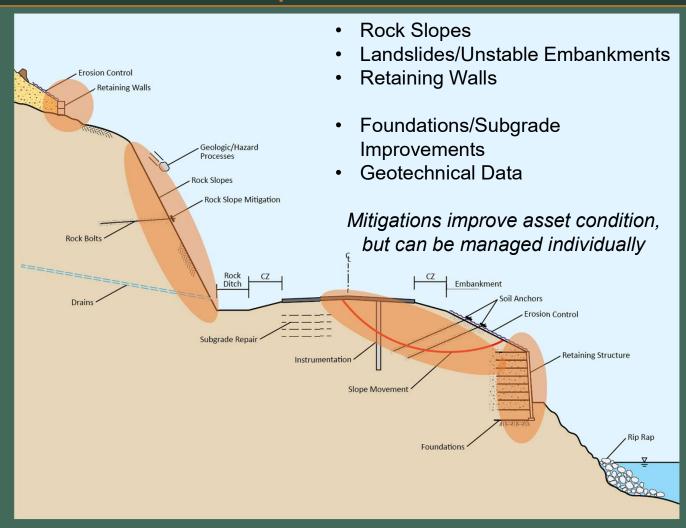
If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

- Inventory
- Perf. Measures
- Deterioration
 Estimates
- Costs & Consequences


"My Department has 5,000 geotechnical assets and 70% meet performance criteria. If we do nothing, in 10 years it will be 65% and will result in accumulated direct costs of \$10,000,000 and indirect costs of \$30,000,000. We're forecast to have 8 road closures per year, growing to 9.

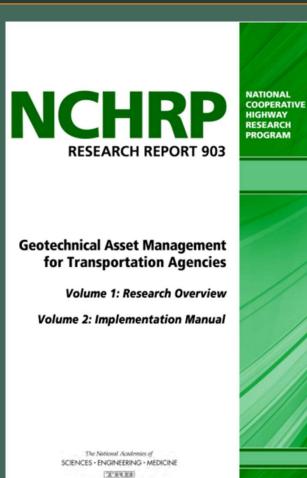
If we invest \$2,500,000 per budget cycle, we'll reduce unforeseen state expenditures by 50%, reduce forecast road closures to 7, and project that 75% meet performance criteria."

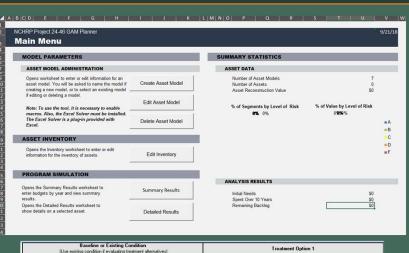
- Inventory
- Perf. Measures
- Deterioration
 Estimates
- Costs & Consequences
- Budgets to Achieve Set Goals



Geotechnical Asset Examples

Geotechnical Asset Examples




Statewide Program Scoping and Execution is Daunting

- Inventory
 - Many infrastructure owners don't know what is out there
 - Not knowing ≠ No liability ≠ No cost
 - Doing the entire state is bananas; we are already fiscally constrained...maybe we can do it driving to and from various sites...
- Condition assessment
 - What kind of shape is it in?
 - Count and then estimate asset condition?!? Can maintenance personnel perform evaluations in the off-season? Interns!!
- Risk Estimation and Evaluation Frameworks
 - How many traffic interruptions occur from geo events? Excess maintenance activities?
 - We don't have all the crash and damage causation data. Can't invent it out of thin air.
- Financial Planning
 - How much will costs increase by deferring maintenance? Will preservation now save replacement costs in the future?
 - Geologists are hard enough to manage, now I need economists also?!?

Guidance and Tools for GAM

- Guidance
- Blank
 Inventory and
 Condition
 Databases
- Fiscal Decision
 Support Tools
- Great Starting Point

NO
REQUIREMENTS
EXIST

- Scoping
 - Adopt known assessment systems with adjustments (i.e. RHRS, USMP)
 - Document with minor pilot programs
 - Scope inventory and condition, then figure out next phase
 - All in, all at once
- Inventory
 - Statewide, Regional, or Corridor
 - Desk, Field, Combo Study

Project Scoping

Geographic Reach Inventories and Condition Assessment

Risk Assessment

Technology

Execution Personnel

Fiscal Analysis

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide

Inventories and Condition
Assessment

Adopt and Adapt Existing (RHRS, USMP)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low)

Data-Driven Probabilistic Risk **Technology**

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

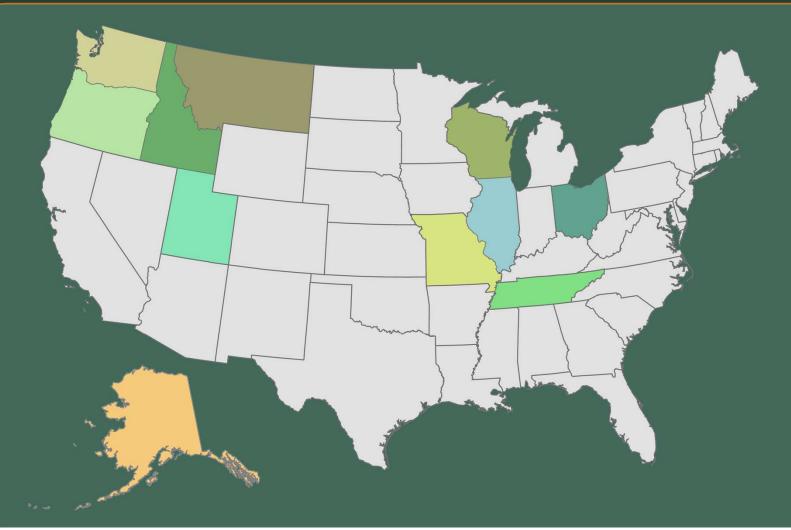
Hybrid with GIS and Enterprise Database

Integrated in TAM Software

Execution Personnel

Majority In-House

Majority Consultant


Consultant to Start, In-House for Implementation Fiscal Analysis

None / Later Phases

Simple Benefit / Cost

Condition Deterioration and Forecasting

Alaska's Path (2013+/-)

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once (Rock, Slides, Walls, Material

Sources)

Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide (NHS)

Inventories and Condition Assessment

Adopt and Adapt Existing (RHRS, USMP, G/F/P)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low)

> Data-Driven Probabilistic Risk

Technology

Paper Field Forms

Excel/Access

Mobile GIS/ArcGIS Online

Hybrid with GIS and Enterprise Database

Integrated in TAM Software

Execution Personnel

Majority In-House

Majority Consultant

Consultant to Start, In-House for Implementation Fiscal Analysis

None / Later Phases

Simple Benefit / Cost

Condition
Deterioration
and Forecasting

AKDOT&PF GAM Program Webpage

AKDOT&PF GAM Program Storymap

Development of the Unstable Slopes Management Program (USMP)

In 2010, AKDOT&PF began inventorying rock slopes and unstable soil slopes under the Unstable Slopes Management Program (USMP). Initial work focused on transportation corridor segments with a high concentration of poorly performing soil and rock slopes, like Long Lake on the Glenn Highway.

A <u>field form</u> was developed for geotechnical engineers or geologists to use in inventorying slopes. Raters spent 15 to 30 minutes at each site, and met with M&O personnel when possible to improve data capture of movement history or required maintenance. More detailed data capture would be part of work on a specific roadway improvement project.

The USMP rating rubric is similar to the Rockfall Hazard Rating Systems (RHRS) already used by many DOTs nationwide. Each category is scored on an exponential scale, with 100 being the worst possible category score. There are 17 final rating categories each with a maximum category score of 100, so the highest possible USMP score for a rock or soil slope was 1,700 points. In general, a higher score implied that a site was in worse condition or that a failure at this location would have a greater effect on the transportation system.

Unstable soil slope on Glenn Highway, MP 49.7. Total USMP score is 518.

Integrating Rock Slope Assets Into GAM

https://akdot.maps.arcgis.com/apps/MapJournal/index.html?appid=15ca1b0297e94ad386c01cc459851ee8

Montana's Path (2004, 2017, Ongoing)

Project Scoping

Major Documentation with Minor Pilots

Phased Approach
Rock Slopes, Now
Walls

All In, All at Once

Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide

Inventories and Condition Assessment

Adopt and Adapt Existing (RHRS, USMP, G/F/P)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low)

Data-Driven Probabilistic Risk

Regional data -> Statewide

Technology

Paper Field Forms

Excel
Access 2004,
Excel 2017

Mobile
GIS/ArcGIS Online

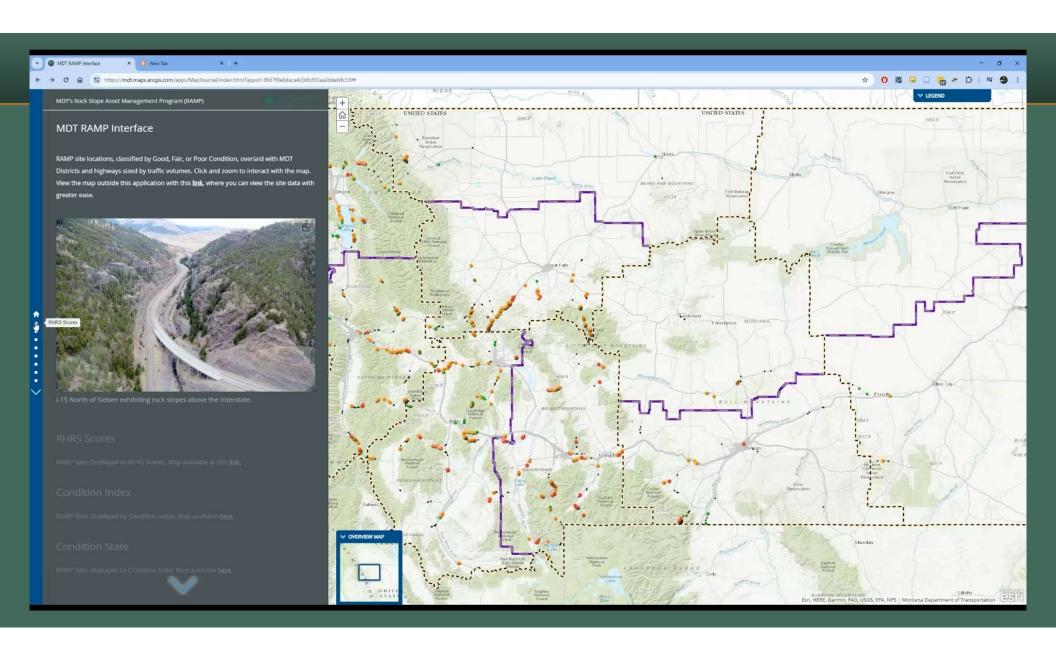
Locations, IDs Mapped

Hybrid with GIS and Enterprise Database

Integrated in TAM Software (2004 – Oracle) Execution Personnel

Majority In-House

Majority Consultant


Consultant to Start, In-House for Implementation (GAM Manager) Fiscal Analysis

None / Later Phases

Simple Benefit / Cost

Condition
Deterioration and
Forecasting
(Expert
Elicitation)

Missouri's Path (2019)

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide

Inventories and Condition
Assessment

Adopt and
Adapt Existing
(RHRS, USMP, +)

Desk Study

Existing Data
Incorporated

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives (AADT)

Indicator Probabilistic Event/Cost (High/Med/Low)

> Data-Driven Probabilistic Risk

Technology

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

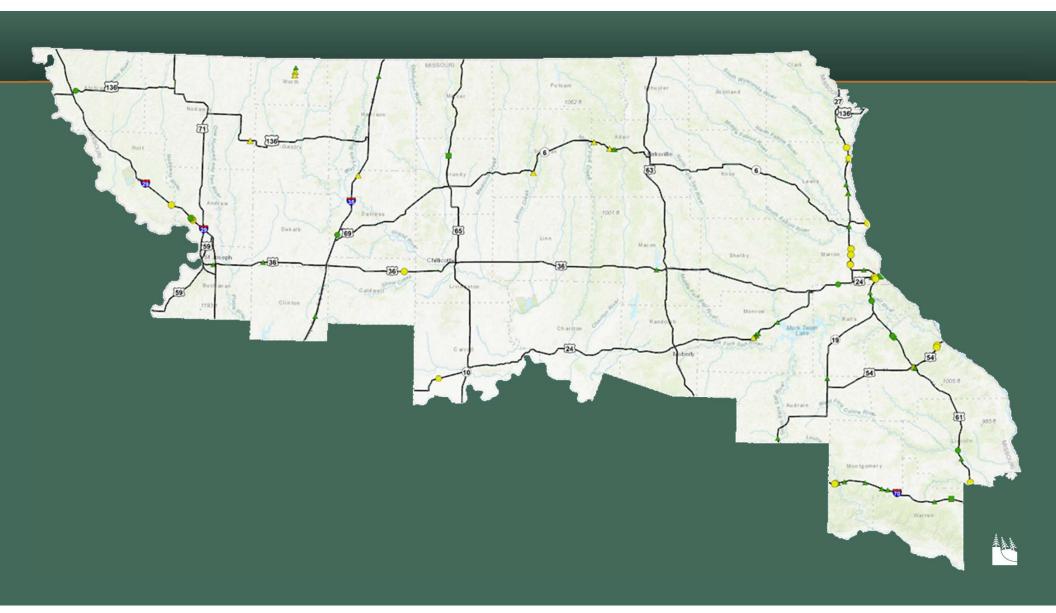
Hybrid with GIS and Enterprise Database

Integrated in TAM Software

Execution Personnel

Majority In-House

Majority Consultant


Consultant to Start, In-House for Implementation Fiscal Analysis

None / Later Phases

Simple Benefit / Cost

Condition
Deterioration
and Forecasting

Oregon's Path (1990's onward)

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide (some still undone)

Inventories and Condition
Assessment

Adopt and Adapt Existing (RHRS, USMP)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low

> Data-Driven Probabilistic Risk

Technology

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

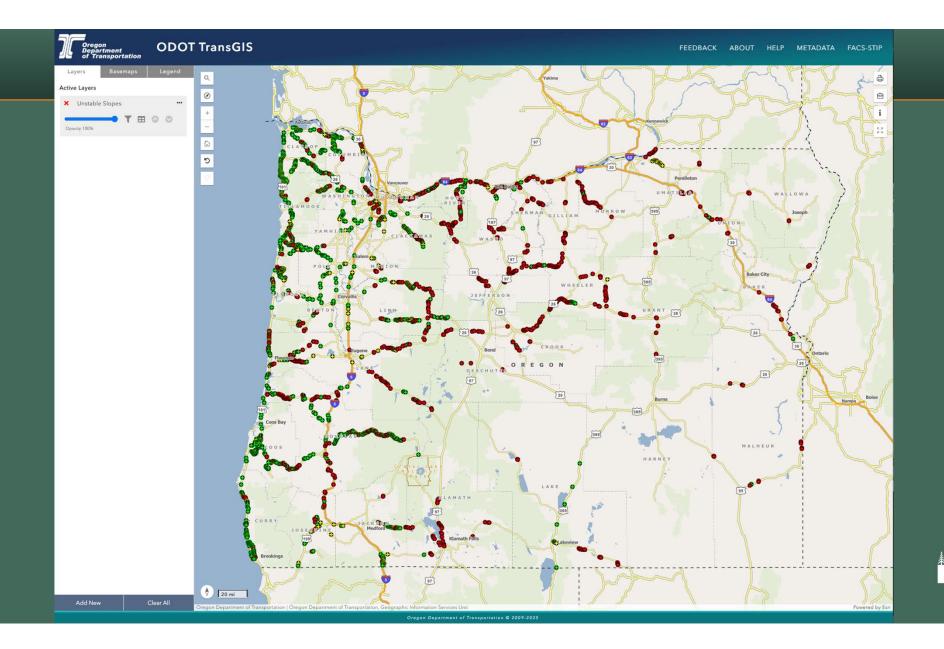
Hybrid with GIS and Enterprise (GIS) Database

Integrated in TAM Software

Execution Personnel

Majority In-House (minor consultant)

Majority Consultant


Consultant to Start, In-House for Implementation Fiscal Analysis

None / Later Phases

Simple Benefit /
Cost (no
economists)

Condition
Deterioration
and Forecasting

Project Scoving

Major

Documentation
With Minor

filots

Physed

Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

One select geohazards corridor

Regional

Statewide

Inventories and Condition
Assessment

Adopt and Adapt Existing (RHRS, USMP) (~2004)

Desk Study (incl. LiDAR and UAVs)

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low

Data-Driven Probabilistic Risk (Borrowed) Technology

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

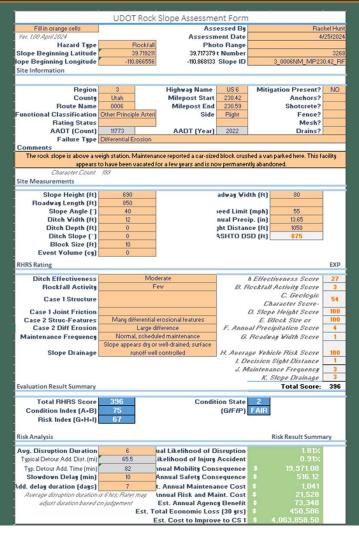
Hybrid with GIS and Enterprise Database

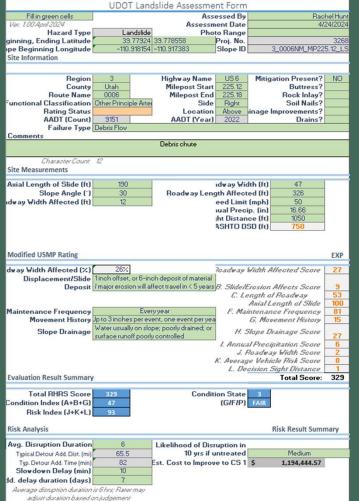
Integrated in TAM Software

Execution Personnel

Majority In-House

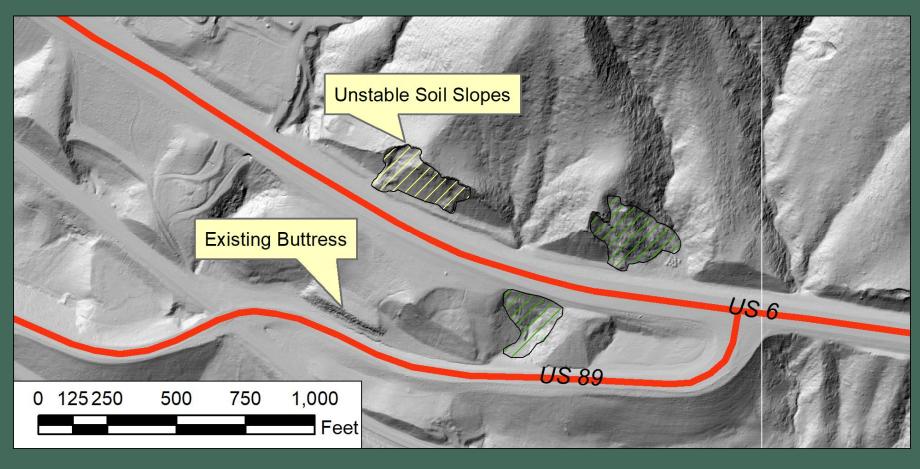
Majority Consultant


Consultant to Start, In-House for Implementation Fiscal Analysis


None / Later Phases

Simple Benefit / Cost

Condition Deterioration and Forecasting



Tennessee's Path (2002-2007, ~2018 onward)

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide

Inventories and Condition
Assessment

Adopt and Adapt Existing (RHRS, USMP)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low

> Data-Driven Probabilistic Risk

Technology

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

Hybrid with GIS and Enterprise Database

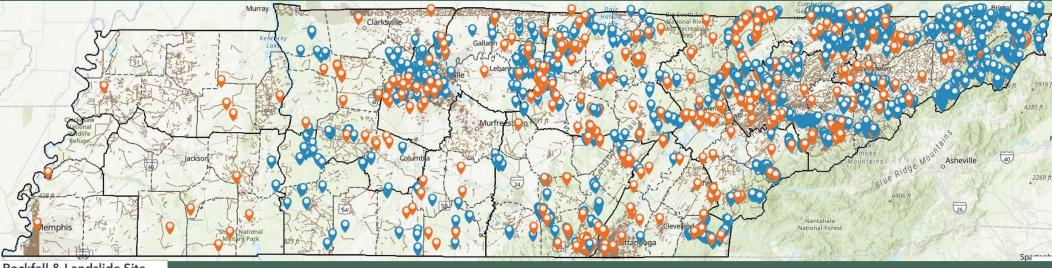
Integrated in TAM Software

Execution Personnel

Majority In-House

Majority Consultant

Consultant to Start, In-House for Implementation Fiscal Analysis


None / Later Phases

Simple Benefit / Cost

Condition Deterioration and Forecasting

Tennessee's Path

Rockfall & Landslide Site

Ohio's Path (2000's onward)

Project Scoping

Major Documentation with Minor Pilots

> Phased Approach

All In, All at Once Geographic Reach

> Maintenanceselected

> > Corridor

Regional

Statewide

Inventories and Condition
Assessment

Adopt and Adapt Existing (RHRS, USMP)

Desk Study

Damage/High Maintenance Basis Risk Assessment

> Index/Score Derivatives

Indicator Probabilistic Event/Cost (High/Med/Low

> Data-Driven Probabilistic Risk

Technology

Paper Field Forms

Excel

Mobile GIS/ArcGIS Online

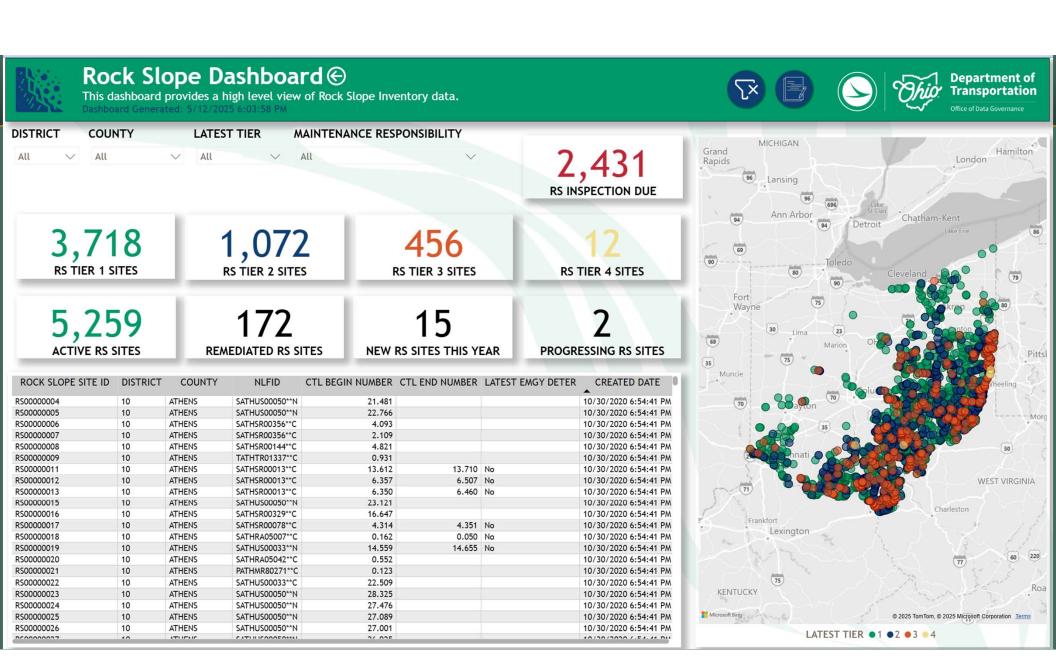
Hybrid with GIS and Enterprise Database

Integrated in TAM Software

Execution Personnel

Majority In-House

> Majority Consultant


Consultant to Start, In-House for Implementation Fiscal Analysis

None / Later Phases

Simple Benefit / Cost

Condition Deterioration and Forecasting

Key Takeaways/Suggestions

- No 'One Way' to get started
 - Use GAM how your Department (DOT, geotech/materials division) see fit...
- Consider a regional (county/region/corridor/highway system) 'big picture' and gauge time and scope based on a pilot
 - Make the pilot a 'go it alone' approach and then see who needs to be engaged?
 - Jump in with field assessments with an existing paper form (USMP) with some tweaks (AADT, maintenance cost ranges, etc.)
- Use existing services to leverage existing IT investments
 - https://*YOUR STATE HERE*.maps.arcgis.com/
- Go Big?

TRY IT OUT AND GET STARTED!

